时间:2025-04-16 15:00:12
连续与极限存在的关系
连续与极限存在的关系可以从以下几个方面理解:
1. 函数有极限不一定连续,但函数连续在区间内某点一定有极限。也就是说,函数有极限是函数连续的必要不充分条件。
2. 函数在某一点处连续,则在此点必有界,因为无界的话,此点就是它的无穷间断点,与连续矛盾。
3. 函数在某一点处连续,则在此点的左右极限都存在,且等于在该点的函数值。
4. 反过来,有界未必是连续的,比如跳跃间断点;极限存在,未必等于函数值,也就是说,未必连续。
《极限存在和极限连续的关系》不代表本网站观点,如有侵权请联系我们删除